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Abstract

We study two problems in online matroid intersection. First, we consider the problem of
maximizing the size of a common independent set between a general matroid and a partition
matroid whose parts arrive online. This captures the classic online bipartite matching problem
when both matroids are partition matroids. Our main result is a (1− 1

e )-competitive algorithm
for the fractional version of this problem. This applies even for the poly-matroid setting, where
the rank function of the offline matroid is replaced with a general monotone submodular function.
The key new ingredient for this result is the construction of a “water level” vector for poly-
matroids, which allows us to generalize the classic water-filling algorithm for online bipartite
matching. This construction reveals connections to submodular utility allocation markets and
principal partition sequences of matroids.

Our second result concerns the Online Submodular Welfare Maximization (OSWM) problem,
in which items arriving online are allocated among a set of agents with the goal of maximizing
their overall utility. If the utility function of each agent is a monotone, submodular function
over the set of available items, then a simple greedy algorithm achieves a competitive ratio
of 1

2 . Kapralov, Post, and Vondrák showed that in this case, no polynomial time algorithm
achieves a competitive ratio of 1

2 + ε for any ε > 0 unless NP = RP (SODA, 2013). We extend
the RANKING algorithm of Karp, Vazirani, and Vazirani (STOC, 1990) to achieve an optimal
(1 − 1

e )-competitive algorithm for OSWM in the case that the utility function of each agent is
the rank function of a matroid.
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1 Introduction

In Online Matroid Intersection, the goal is to maximize the size of a common independent set
between two matroids, when the elements are initially unknown and arrive in some online fashion.
We focus on the case where one of the matroids is a partition matroid. In particular, supposeM
is an arbitrary matroid and Q is a partition matroid with parts Q1, . . . , Qn, both defined over (an
initially unknown) ground set E. We have access to an independence oracle for M restricted to
the elements which have been revealed so far; in other words,M is known offline. Parts from the
partition matroid arrive online. When a part Qj arrives, the elements in Qj are revealed, and we
immediately and irrevocably choose at most one element from Qj . The goal is to maximize the
cardinality of the set of chosen elements, subject to the set being independent in both matroids.

The online matroid intersection problem with part arrival is a natural generalization of the
classic vertex-arrival online bipartite matching problem, which was introduced in a seminal work
by Karp, Vazirani, and Vazirani [KVV90]. In online bipartite matching, we are given one side
of a bipartite graph (the offline vertices) in advance, while the vertices on the other side arrive
online. When an online vertex arrives, all of its incident edges are revealed, and the algorithm
chooses at most one of the edges. The goal is to maximize the number of edges chosen, subject
to the edges being a matching in the graph. In the language of online matroid intersection, online
bipartite matching is the setting whereM is the partition matroid over the edges whose parts are
the neighborhoods of the vertices on the offline side, and Q is the partition matroid corresponding
to the neighborhoods of the vertices arriving online.

In addition to generalizing vertex-arrival online bipartite matching, online matroid intersection
captures a richer class of resource allocation problems with combinatorial constraints.

• Restricted Matching Problems. Bipartite matching models fundamental resource allo-
cation problems, with one such example being matching tasks to servers. What if we have
additional limitations on a cluster of servers on the same server rack, due to cooling or band-
width constraints? We can model this problem by takingM to be a laminar matroid instead
of partition matroid.

• Coflows. Say we have a computing resource which may process some tasks in parallel.
For example, perhaps a single server rack is made up of different servers, each of which is
equipped to handle only certain types of tasks. In this case, tasks which may be processed
together on a single resource form a transversal matroid. Tasks processed in parallel are called
coflows, inspired by applications to MapReduce [CS12]. Coflows governed by general matroid
constraints have been studied [JKR17, IMPP19] in an offline setting. In an online formulation
of this problem, we have ∆ resources and n tasks arriving online which we must irrevocably
assign to computing resources; the goal is to accommodate as many tasks as possible.

• Matroid Coloring. Matroid coloring [Edm65, Knu73] can be written as a matroid inter-
section problem, and hence, we can model the problem of coloring any matroid online. Say
we have ∆ colors and elements of a matroid N arrive one by one. We may color elements
as they arrive; however, each color must be independent in N . The objective is to color as
many elements as possible. This may be modelled whenM is the product of ∆ copies of N ,
and Q dictates that every element can be at most one color.

A related problem to online matroid intersection is Online Submodular Welfare Maximization.
In this problem, m items arrive online to be allocated to n agents who each have utility functions
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fi : 2
[m] → R≥0. Each utility function fi is a monotone, submodular function on [m]. The goal

is to maximize the total welfare of the agents, i.e., the sum of the utilities. In the offline setting,
a 1 − 1/e approximation algorithm can be achieved using an algorithm for Monotone Submodular
Maximization subject to a matroid constraint [CCPV11]. Surprisingly however, Kapralov, Post,
and Vondrák [KPV13] show that achieving an competitive ratio greater than 1/2 in polynomial
time (achieved trivially with the Greedy algorithm) is impossible unless NP = RP.

We show that this barrier can be circumvented if the class of monotone submodular functions
is restricted to those that arise from the rank function of a matroid. In particular, we assume that
each utility function fi for i ∈ [n] is the rank function of matroid Mi over the ground set [m] of
items. In this setting, we may assume that each agent i only receives an independent set ofMi, and
thus we seek an allocation of maximum cardinality in the intersection ofM =M1× . . .×Mn and
Q. Because of this, unlike general monotone submodular valuations, the optimal offline allocation
can be computed exactly for matroidal utilities using an algorithm for matroid intersection. Hence,
this offline problem appears as one of the few tractable cases of the pricing and allocation problems
in VCG auctions with combinatorial utilities.

The class of matroid rank valuations form a broad class which captures any utility function in
which the marginal benefit to each agent of receiving an additional item is binary, and also satisfies
diminishing marginal returns. More formally, the set of matroid rank functions is equivalent to the
class of submodular utility functions with {0, 1}-marginal gains. When Mi is a uniform matroid
for all i, we recover the well-studied online bipartite b-matching problem, but it also captures
more general laminar constraints on agents. These more general constraints appear frequently in
resource allocation problems to ensure a feasible allocation of tasks to servers. When each Mi is
a transversal matroid, each agent utility from a set of items is the size of the maximum matching
among this set. This can model the setting in which each agent represents a group of individuals
whom, upon receiving a set of items, optimally match the items received to people in their group.
Finally, note that each agent i may have a different type of matroidMi. This allows these different
types of matroid valuations to be mixed and matched in any way which arises in the application
of interest.

1.1 Our Results and Techniques

Fractional Online Poly-Matroid Intersection Our first result concerns the fractional ver-
sion of online matroid intersection, where the goal of the algorithm is to maintain a fractional
independent set in the intersection of both matroids whose size is as large as possible. We give
a (1 − 1/e)-competitive algorithm for this problem. In fact, our result applies to the more general
setting of fractional online poly-matroid intersection, in which the matroidM is replaced with the
poly-matroid Pf = {x ∈ RE

≥0 : ∀S ⊆ E, x(S) ≤ f(S)} of some monotone submodular function f .
We note that the (1− 1/e) competitive ratio is tight, because there is a matching upper bound even
for fractional online bipartite matching [Fei19].

Theorem 1.1. There exists a deterministic polynomial time (1 − 1/e)-competitive algorithm for
fractional Online Poly-Matroid Intersection.

Our algorithm for this setting generalizes the water-filling algorithm, a (1 − 1/e)-competitive
algorithm for online bipartite matching. In online matching, the water-filling algorithm works by
keeping track of a “water level” for each offline vertex, which is the fractional amount it has been
filled so far. Upon the arrival of each online vertex, the algorithm continuously sends water to the
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its neighbors with the lowest water level, until either all neighbors have been filled or the arriving
vertex has been depleted.

One key challenge in obtaining a water-filling algorithm for online poly-matroid intersection
is defining what “water levels” should be for an arbitrary poly-matroid Pf . Intuitively, given a
fractional allocation {xe}e∈E , the water level we of element e should represent how “filled” it is
under the allocation x. For instance, in online bipartite matching, the water level of an edge (i, j)
(where i is offline and j is online), is the fraction of vertex i’s capacity used up by x. In the
poly-matroid setting, edges become elements e ∈ E, but there is no longer a notion of unit-capacity
vertices. Instead, each e is involved in many submodular constraints of the form x(S) ≤ f(S) for
each S ∋ e, and it is not immediately clear how these constraints should be aggregated into a water
level we.

Nevertheless, we show that there exist natural values for these “submodular water levels”, and
we present three different ways of describing them.

1. A combinatorial description. Water levels can be viewed as a measure of density. We
describe an iterative process in Algorithm 1 which finds a densest set under x (i.e. the set with
the least multiplicative slack), contracts this set, and repeats until all elements are contracted.
The density at which an element gets contracted is the water level of that element.

2. A submodular optimization problem. The level sets {e ∈ E : we ≥ t} for all t ≥ 0 can be
characterized by solutions to the submodular minimization problem minS⊆E{t ·f(S)−x(S)}.
This program demonstrates that the level sets of w correspond to a weighted version of the
principal partition sequence studied in [Nar91, Fuj08] for poly-matroids.

3. A convex program. The concept of water levels also arise from market equilibria. Jain
and Vazirani [JV10] introduced a notion of submodular utility allocation (SUA) markets as
a generalization of linear Fisher markets [NRTV07, Chapter 5]. In a submodular utility
allocation market, we have some items A, each with weight ma. We would like to fractionally
select a set of items, with the goal of maximizing the Nash social welfare of the items; however,
the set of items picked must be feasible in a poly-matroid defined by a sub-modular function
f . It turns out the water level vector is precisely the optimal solution of an SUA market.

Once a notion of water levels is defined, we follow the classic water-filling paradigm: when a part
Qj arrives, we incrementally increase the allocation xe on those elements e ∈ Qj with smallest water
level. However, while this intuitive notion of increasing water levels is straightforward to implement
in the case of online bipartite matching, more care is required in the more general setting of online
poly-matroid intersection. For example, when raising xe for the e ∈ Qj of minimum water level, at
what rate must each xe be raised with respect to each other? In the general poly-matroid setting,
these rates are not unique, so the algorithm as stated intuitively is not even well-defined.

To address this, we present a discretized version of the algorithm. At each arrival, we solve a
convex program to determine the entire allocation xe for each e ∈ Qj at once. We show that this
allocation can be computed in polynomial time, and satisfies the key water-filling properties: (1)
The set of elements which receive a nonzero allocation from Qj all end up with minimum water
level among elements in Qj , and (2) If a part Qj does not allocate a full unit of water, then all
elements e ∈ Qj end up with water level 1.

Each of our three viewpoints on water levels sheds light on the desired properties which we
will use in our analysis. We show four properties: monotonicity (Proposition 3.6), indication
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of feasibility (Proposition 3.7), duality (Proposition 3.8), and locality (Proposition 3.9). These
properties, as well as the water-filling property of our algorithm, allow us to leverage a primal-dual
analysis to prove that the algorithm is (1− 1/e)-competitive.

Matroidal Welfare Maximization There are several classes of utility functions (also called
valuation functions) often considered in the welfare maximization literature (see [DFF21] for a
discussion and comparison of some of these classes). The following are of interest specifically in
online welfare maximization:

• Matroid rank functions (MRF): each agent has a weight ai ∈ R≥0 and matroid Mi. The
utility of S ⊆ [m] is ai · rankMi(S).

• Weighted matroid rank functions (WMRF): each agent has a weight vector v(i) ∈ R[m]
≥0 on the

items and a matroidMi. The utility of S ⊆ [m] is max{v(i)(I) : I ⊆ S, I independent inMi}.

• Submodular functions: each agent has a monotone submodular function fi with fi(∅) = 0.
The utility of S ⊆ [m] is fi(S).

We have the relationship MRF ⊊ WMRF ⊊ Submodular between these classes. Kapralov, Post,
and Vondrák [KPV13] addressed the Submodular class by showing that no polynomial time algo-
rithm for online submodular welfare maximization can be better than 1/2-competitive unless NP
= RP. In the middle we have WMRF, which captures as a special case the edge-weighted online
bipartite matching problem. The best known competitive ratio for edge-weighted online bipartite
matching is 0.5368 [BC21], and there seem to be major technical barriers to reaching 1 − 1/e for
this setting. The second main contribution of this paper is a tight (1− 1/e)-competitive algorithm
for online submodular utility allocation with MRF utility functions.

Theorem 1.2. There exists a randomized polynomial time (1−1/e)-competitive algorithm for Online
Submodular Welfare Maximization when the agents’ utility functions are matroid rank functions.

With this contribution, the MRF class of utility functions is, to the authors’ knowledge, the
broadest class known to admit a 1− 1/e competitive ratio in polynomial time.

Our result captures the (1− 1/e)-competitive ratios for online bipartite matching due to Karp,
Vazirani, and Vazirani [KVV90], as well as the extension to vertex-weighted bipartite matching
by Aggarwal, Goel, Karande, and Mehta [AGKM11], and b-matching setting by Albers and Schu-
bert [AS21]. All of these cases can be modelled as online submodular welfare maximization in which
each agent’s utility function is the rank function of a uniform matroid1. We substantially gener-
alize these settings by allowing the agents (i.e., the offline vertices) to have an arbitrary matroid
constraint over their neighboring edges.

We apply the primal-dual framework introduced by Devanur, Jain, and Kleinberg [DJK13] to
analyze a “Matroidal” RANKING algorithm. In this sense, our proof also unifies the analyses of the
above special cases; specifically, we simplify the analysis in the case of b-matching by avoiding the
need to use a configuration LP. Note that Albers and Schubert [AS21] observed that the standard
b-matching LP could not be used to show that RANKING achieves a 1− 1/e competitive ratio. We
circumvent this issue by using the matroid-based LP. In the b-matching setting this is effectively
equivalent to the b-matching LP where, for each offline vertex i, its capacity bi is replaced with the
degree of the vertex (i.e., if it has fewer than bi incident edges).

1A matroid in which a set is independent if it has cardinality at most b.
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1.2 Related Work

Online Matching There is an extensive line of work on online matching, starting with the work
of Karp, Vazirani and Vazirani [KVV90], who gave a (1 − 1/e)-competitive algorithm for online
bipartite matching in the adversarial order setting. The same competitive ratio was extended to
the vertex-weighted setting in [AGKM11], and further to the vertex-weighted b-matching setting in
[AS21]. Devanur, Jain, and Kleinberg [DJK13] showed how the results in [KVV90] and [AGKM11]
could be derived using the online primal-dual framework, which unified and simplified the existing
analyses. While the RANKING algorithm requires O(n log n) bits of randomness, Buchbinder,
Naor, and Wajc [BNW23] provide a randomized rounding scheme requiring only (1±o(1)) log log n
bits of randomness.

For edge-weighted online bipartite matching, [FHTZ20] were the first to break the 1
2 -competitive

barrier. This has been subsequently refined in [SA21, GHH+21, BC21] to a 0.5368-competitive ratio.
Online bipartite matching has also been studied in the vertex-arrival Bayesian setting, also known
as the Ride Hail problem; [PPSW21] give a better-than-1/2 approximation for this setting.

Online Matroid Intersection Offline matroid intersection captures a broad class of combina-
torial problems and has been well studied in both polyhedral theory and algorithms (for a survey
on this topic, see [Sch03, Chapter 41]). In [GS17], Guruganesh and Singla study an online ma-
troid intersection problem, with edges arriving in random order, beating the 1/2-competitive ratio
achieved by Greedy. This was very recently improved by Huang and Sellier [HS23] to 2/3 + ε. In
[BGH+23], the part-arrival online matroid intersection model is considered. They instead study
the problem of maintaining a max cardinality independent set, while minimizing recourse.

Offline Submodular Welfare Maximization The offline variant of Submodular Welfare Max-
imization problem can be cast as a problem of maximizing a monotone submodular function subject
to a (partition) matroid constraint. While a simple greedy algorithm achieves an approximation
ratio of 1

2 , [CCPV11] gave an improved (1 − 1/e)-approximation using the Continuous Greedy al-
gorithm followed by Pipage Rounding. There can be no (1− 1/e + ε)-approximation unless P=NP
since this problem captures max-k-cover as a special case [Fei98].

When the monotone submodular function is the rank function of a matroid, the welfare max-
imizing offline allocation can be computed optimally. These allocations have been well-studied
in the context of designing socially optimal allocations which satisfy certain desirable fairness
constraints [VZ23, DFSH23]. For example, in [BCIZ21] it is shown that an optimal allocation
which is envy-free up to one item (EFX) exists and can be computed efficiently. In [BEF21] they
study the case of valuations which have binary marginals, but which are not necessarily submodu-
lar [BEF21]. They also give truthfulness guarantees for private valuations, which has been further
studied in [BV22].

Principal Partition The principal partition of a matroid is related to our definition of water
levels. It is precisely the nested sets found in Algorithm 1, when x is the all ones vector. There
have been several works studying principal partitions, including generalizations to arbitrary vectors
x ∈ RE and extensions from rank functions to sub-modular functions [Nar91, Fuj08]. We note that,
although the objects studied in [Nar91] and [Fuj08] are closely related to our water levels, our work
is distinct in (1) we shift perspective from the family of nested sets in [Fuj08] to the properties of a
single vector w, and (2) we study properties of how w changes dynamically with the weights given by
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x, such as monotonicity (Proposition 3.6), duality (Proposition 3.8), and locality (Proposition 3.9).
These properties are clearly visible with our new perspective. In addition, we make the novel
connection between principal partitions and water-filling in online bipartite matching.

The principal partition has been used for constant competitive algorithms in the matroid sec-
retary problem under random assignment [Sot13]. Huang and Sellier [HS23] also use the principal
partition to get an improved approximation ratio of 2/3 − ε for online matroid intersection with
random order arrivals. Chandrasekaran and Wang [CW23] use the principal partition sequence for
improved approximations in the submodular k-partition problem.

1.3 Organization of the Paper

First, in Section 2, we define the problem and introduce some preliminaries. Next, in Section 3, we
develop a theory of water levels and provide three equivalent formulations. In Section 4, we give a
water-filling algorithm for fractional online poly-matroid intersection and prove that it achieves a
competitive ratio of 1 − 1/e. In Section 5, we give a (1 − 1/e)-competitive algorithm for (integral)
Online Submodular Welfare Maximization with matroidal utilities. We conclude with some future
directions in Section 6

2 Problem Definition and Preliminaries

We start by defining the setting and notation for fractional Online Poly-Matroid Intersection.
Note that this generalizes the problem of Online Matroid Intersection with (offline) matroidM by
choosing the rank function ofM to be the submodular function defining the poly-matroid.

Formally, we have an (offline) monotone submodular2 function f over ground set E with f(∅) =
0 and f({e}) > 0 for all e ∈ E3. We also have an (online) partition matroid Q over E in which at
most one element can be chosen from each of the parts Q1, . . . , Qm (i.e., the rank of each part in
Q is 1). The ground set E is initially unknown. Parts arrive online one-by-one, each Qj upon its
arrival revealing its contained elements. We have offline access to an evaluation oracle for f that
may be called on any subset of elements revealed so far.

The goal is to allocate values (xe)e∈Qj to the elements in Qj immediately and irrevocably when
Qj arrives so as to maximize the final value of

∑
e∈E xe. We must, however, allocate no more than

1 total value to elements in each Qj , so x(Qj) :=
∑

e∈Qj
xe ≤ 1. Moreover, no set S ⊆ E can have

more total value than f(S), so that x(S) :=
∑

e∈S xe ≤ f(S). Another way to say this is that the
point x maintained must remain a feasible point in the intersection of the poly-matroid for f and
the matroid polytope for Q. These are defined respectively as:

Pf :=
{
x ∈ RE

≥0 : x(S) ≤ f(S) for every S ⊆ E
}

and
Q :=

{
x ∈ RE

≥0 : x(Qj) ≤ 1 for every j = 1, . . . , n
}
.

Note that we refer to both the partition matroid and its polytope as Q; it will be clear from context
which we are referring to throughout the paper. We may now restate the constraints of the problem
by saying that x must remain a point in Pf ∩Q.

2A function f : 2E → R≥0 is submodular if for all A,B ⊆ E, we have f(A ∪ B) ≤ f(A) + f(B)− f(A ∩ B). It is
monotone if f(A) ≤ f(B) whenever A ⊆ B.

3This assumption is without loss of generality, since any e with f({e}) = 0 can be removed.
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Again, observe that this captures the fractional Online Matroid Intersection problem as a special
case by using the rank function r of a matroid as the function f .

2.1 The Dual LP and the Lovász Extension

We analyze the algorithm for fractional online poly-matroid intersection via the primal-dual frame-
work. The primal linear program (LP) describing Online Poly-matroid Intersection below, as well
as its dual are:

max
∑
e∈E

xe min
∑
S⊆E

f(S) · αS +
n∑

j=1

βj

s.t.
∑

e∈Qj
xe ≤ 1, ∀j ∈ [n] s.t.

∑
S∋e αS + βj(e) ≥ 1, ∀e ∈ E∑

e∈S xe ≤ f(S), ∀S ⊆ E αS , βj ≥ 0, ∀S ⊆ E, j ∈ [n].

xe ≥ 0, ∀e ∈ E.

In the dual, j(e) denotes the index j for which e ∈ Qj . The solution to the primal LP is the
(fractional) optimal offline solution to a given instance, and we use OPT to denote its value. By
strong duality, the optimal values of the primal and dual LPs are the same.

It will be useful for our analysis to re-write the dual objective in a different form. By a standard
uncrossing argument, we may assume that the optimal dual α is supported on a nested family of
sets. Thus, we can re-parameterize the α ∈ R2E

≥0 as γ ∈ RE
≥0 by γe :=

∑
S∋e αS . Notice that we can

recover the part of the objective
∑

S⊆E f(S) · αS from γ as

∑
S⊆E

f(S) · αS =

∫ ∞

0
f({e ∈ E : γe ≥ t}) dt. (1)

The right-hand-side integral is exactly the Lovász extension Lf of a submodular function f . This
is a natural continuous extension of the submodular function f which has been studied in many
contexts. Although equivalent formulations exist, it will be convenient for us to use the following
definition.

Definition 2.1. Let f be a monotone submodular function on E with f(∅) = 0. The Lovász
extension Lf : RE

≥0 → R of f is

Lf (w) :=

∫ ∞

0
f({e ∈ E : we ≥ t}) dt.

With this definition, we can write our dual in terms of γ as follows.

min Lf (γ) +
n∑

j=1

βj

s.t γe + βj(e) ≥ 1, for all e ∈ E

γ, β ≥ 0.
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3 Water Level Machinery

Our plan is to generalize the water-filling algorithm for online bipartite matching. We want to

assign each element e ∈ E a water level we = w
(x)
e which depends on the current allocation x.

When a part Qj arrives, we continuously increase xe for the element e ∈ Qj of lowest water level,
until we either allocate a total of 1 unit of mass or no further increases to the elements in Qj are
feasible. In particular, x should remain a feasible point in the intersection of the poly-matroid
(associated with monotone submodular function f with f(∅) = 0) and the matroid polytope for
partition matroid Q.

To understand how we define this water level vector w = w(x) ∈ RE
≥0 of allocation x ∈ Pf , we

first enumerate several properties that the water levels should satisfy in order for the water-filling
algorithm to work as it does for online bipartite matching:

1. (Monotonicity) w(x) is coordinate-wise non-decreasing in x.

2. (Indication of Feasibility) w(x) ≤ 1 if and only if x(S) ≤ f(S) for all S ⊆ E.

3. (Locality) If w
(x)
e1 ̸= w

(x)
e2 , then

∂w
(x)
e2

∂xe1
= 0.

4. (Duality) Lf (w
(x)) =

∑
e∈E xe.

Monotonicity and feasibility indication are natural properties which intuitively require that we

is an indicator of how close xe is to being part of a tight constraint. The need for locality and duality
is less obvious, but they are important for the details of the primal-dual analysis of water-filling.
Specifically, this is because the dual value γe of an element e ∈ E will be defined as a function of
the water level we. First, the locality property says that small changes to one element’s allocation
xe1 should not affect any other element’s water level we2 unless the two elements are already at the
same water level. This is needed for the key water-filling property, that the “lowest water levels
first” allocation strategy does not change the water level we (and thus the dual γe) for elements
e at higher water levels. Secondly, the duality property is needed to relate increases in the dual
objective term Lf (γ) to increases to the primal objective

∑
e∈E xe as the algorithm progresses.

3.1 Definition of Water Levels and Equivalent Formulations

In order to define a water level vector that satisfies our desired properties, it will be convenient
(and enlightening) to provide both algorithmic and static definitions, which we will prove are
equivalent. By juggling three different definitions, we are able to provide succinct proofs of the four
key properties of water levels.

First, let’s consider a naive construction: For x ∈ RE
≥0, we could define w

(x)
e = maxS∋e

x(S)
f(S) , i.e.

the maximum density4 of a poly-matroid constraint involving xe. Such a definition clearly satisfies
monotonicity and indication of feasibility. However, this definition does not capture the water levels
from the classic bipartite matching setting (i.e. in a partition matroid), and we can see this already
in the simple setting of E = {1, 2} and f(S) = |S|. In such a setting, the poly-matroid effectively
only has the constraints 0 ≤ x1, x2 ≤ 1, so we intuitively should let we = xe. However, notice that
if x1 < x2, then we have w1 = maxS∋1

x(S)
f(S) = x1+x2

2 . We see that this construction deviates from

4By convention, we consider the density of the empty set x(∅)
f(∅)

to be 0.
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what we expect, and indeed we also find that our desired locality and duality properties are not
satisfied. This problem arises because the heavier element x2 influences the density of the densest
constraint on x1, despite the two variables being functionally independent.

The critical insight is that we can prevent this undesirable behavior by iteratively contracting
sets with larger density before assigning the values of we to sets with lower density. This process is
formalized in Algorithm 1, which gives our first construction of the water level vector w(x) we will
ultimately use.

Algorithm 1: A Combinatorial Presentation of Water Levels

input : A point x ∈ RE
≥0.

1 Initialize ℓ← 0, S0 ← ∅.
2 while Sℓ ̸= E do
3 Let fℓ : E \ Sℓ → R≥0 be the contracted function fℓ(T ) = f(T ∪ Sℓ)− f(Sℓ).

4 Let Tℓ+1 be the unique maximal set5 in argmaxT⊆E\Sℓ

x(T )
fℓ(T ) , i.e. the largest densest set.

5 Let tℓ+1 =
x(Tℓ+1)
fℓ(Tℓ+1)

be the density of Tℓ+1.

6 Set we ← tℓ+1 for all e ∈ Tℓ+1.
7 Update Sℓ+1 ← Sℓ ∪ Tℓ+1.
8 ℓ← ℓ+ 1.

9 return w.

The algorithm gives us a pictorial view of how we construct water levels, but it does not yet
make obvious that our desired properties should hold. For that, we will also introduce the following
more compact definition.

Definition 3.1 (Water levels). Define for a given y ∈ RE
≥0,

S∗
f (y) := unique inclusion-wise maximal set in arg min

S⊆E
(f(S)− y(S)).

Then, the water levels with respect to an allocation x in Pf are defined as

w(x)
e := sup

{
t > 0 : e ∈ S∗

f

(x
t

)}
,

where we adopt the convention sup∅ = 0.

This definition may seem mysterious at first, but it is in fact equivalent to the output of
Algorithm 1. For readability, we delay this proof until Section 3.3.

Theorem 3.2. For any monotone submodular function f : 2E → R≥0 with f(∅) = 0 and x ∈ RE
≥0,

the output of Algorithm 1 and the vector w = w(x) defined in Definition 3.1 are equal.

Defining w with the sets S∗
f (y) allows us to prove many nice properties using the following

lemma.

Lemma 3.3. The set S∗
f (y) is non-decreasing in y, i.e. for any y, z ∈ RE

≥0 with y ≤ z coordinate-
wise, we have S∗

f (y) ⊆ S∗
f (z).

5Such a set is unique due to the sub-modularity of f .
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For instance, we immediately obtain the following “level set” characterization of w.

Corollary 3.4. We have {e ∈ E : w
(x)
e ≥ t} = S∗

f (
x
t ).

Proof. From Lemma 3.3, the sets S∗
f (

x
t ) are nested and decreasing in t, which together with the

definition of w
(x)
e in Definition 3.1 immediately gives the statement of the Corollary.

Proof of Lemma 3.3. Let Sy = S∗
f (y) and Sz = S∗

f (z). Then we have

f(Sy ∩ Sz)− y(Sy ∩ Sz) + f(Sy ∪ Sz)− z(Sy ∪ Sz) ≤ f(Sy)− y(Sy ∩ Sz) + f(Sz)− z(Sy ∪ Sz)

≤ f(Sy)− y(Sy) + f(Sz)− z(Sz).

The first inequality follows from the submodularity of f . The second inequality follows from the
modularity of y and z, and the fact that z(Sy \ Sz) ≥ y(Sy \ Sz). By minimality of f(Sy)− y(Sy)
and f(Sz) − z(Sz), we must have f(Sy) − y(Sy) = f(Sy ∩ Sz) − y(Sy ∩ Sz) and f(Sz) − z(Sz) =
f(Sy ∪ Sz)− z(Sy ∪ Sz). Therefore, by maximality of Sz, we have Sy ∪ Sz = Sz.

Finally, we also find an unexpected connection to market equilibria. Jain and Vazirani [JV10]
introduced a notion of submodular utility allocation markets which can be described with the
following convex program.

max
u

∑
e∈E me log ue∑
e∈S ue ≤ f(S), ∀S ⊆ E (αS)

ue ≥ 0.

(SUA)

It turns out the water levels of an allocation x can be computed from the optimal utilities of an
SUA market where each element e has weight me := xe. Algorithm 1 also gives us optimal duals
to (SUA), which we also prove in Section 3.3.

Theorem 3.5. Consider the vector w, the nested sets S1 ⊂ · · · ⊂ SL, and the levels t1, . . . , tL
generated by Algorithm 1. Then t1 > · · · > tL ≥ 0. Moreover, if we define

αSL
:= tL

αSℓ
:= tℓ − tℓ+1 ℓ = 1, . . . , L− 1

and αS = 0 for all other S ⊆ E, then, ue =
xe
we

is an optimal primal solution to (SUA) and αS is
an optimal dual solution.

3.2 Key Properties of Water Levels

Armed with the characterizations of water levels, we show they satisfy the desired properties.

Proposition 3.6 (Monotonicity). The vector w(x) is coordinate-wise non-decreasing in x.

Proof. This follows immediately from Lemma 3.3, since the level sets {e ∈ E : w
(x)
e ≥ t} = S∗

f (
x
t )

for each fixed t only increase as x increases.

10



Proposition 3.7 (Indication of Feasibility). w(x) ≤ 1 if and only if x(S) ≤ f(S) for all S ⊆ E.

Proof. This follows from Algorithm 1. If w(x) ≤ 1, then in particular t1 = maxS⊆E
x(S)
f(S) ≤ 1,

which means x(S) ≤ f(S) for all S ⊆ E. Conversely, if x(S) ≤ f(S) for all S ⊆ E then clearly
t1 ≤ 1. Moreover, the densities tℓ are decreasing by Theorem 3.5, implying tℓ ≤ 1 for all ℓ. Thus
w(x) ≤ 1.

Proposition 3.8 (Duality). For any x ∈ RE
≥0, we have Lf (w

(x)) =
∑

e∈E xe.

Proof. For this, we refer to the convex program formulation of water levels from Theorem 3.5. Tak-
ing the optimal primal/dual pair ue, αS from Theorem 3.5, the complementary slackness conditions
of (SUA) give αS

∑
e∈S ue = αSf(S) for each S ⊆ E. Summing over those S with αS > 0, we get

L∑
ℓ=1

αSℓ
f(Sℓ)

(a)
=

L∑
ℓ=1

αSℓ

∑
e∈Sℓ

ue
(b)
=

L∑
ℓ=1

αSℓ

∑
e∈Sℓ

xe
we

=
∑
e∈E

 ∑
ℓ:Sℓ∋e

αSℓ

 · xe
we

(c)
=

∑
e∈E

xe.

Here, (a) is using αS
∑

e∈S ue = αSf(S) for each S ⊆ E, (b) is because ue = xe
we

by Theorem 3.5,
and (c) is because

∑
ℓ:Sℓ∋e αSℓ

= we, using the fact that the sets Sℓ are nested and the definition of

αSℓ
in Theorem 3.5. Finally, the LHS is equal to Lf (w

(x)) by (1) and using
∑

ℓ:Sℓ∋e αSℓ
= we.

Proposition 3.9 (Upwards Locality6). Let w(x), w(y) be the water level vectors of x, y respectively,

where x ≤ y. Let τ = max{w(y)
e : ye ̸= xe} be the largest water level on an element where x and y

differ. Then for all e ∈ E with w
(y)
e > τ , we must have w

(x)
e = w

(y)
e .

Proof. It suffices to show that {e ∈ E : w
(x)
e ≥ t} = {e ∈ E : w

(y)
e ≥ t} for all t > τ . Let

A = {e ∈ E : xe = ye}. By Proposition 3.6 and by choice of τ , we have

{e ∈ E : w(x)
e ≥ t} ⊆ {e ∈ E : w(y)

e ≥ t} ⊆ A.

However, since x and y are equal on A, we have from Definition 2.1 that

{e ∈ E : w(x)
e ≥ t} = {e ∈ E : w(y)

e ≥ t} = unique maximal set in arg min
S⊆A

(f(S)− x(S)).

3.3 Proofs of Equivalence of Water Level Definitions

In this sub-section, we prove the combinatorial decomposition in Algorithm 1 and the SUA market
formulation both produce the water levels vector defined in Definition 3.1.

Theorem 3.2. For any monotone submodular function f : 2E → R≥0 with f(∅) = 0 and x ∈ RE
≥0,

the output of Algorithm 1 and the vector w = w(x) defined in Definition 3.1 are equal.

Proof. Let ŵ be the output of Algorithm 1, and let w be the vector defined in Definition 3.1. To
prove ŵ = w, we will show that all level sets of ŵ and w are equal. That is, for all t ≥ 0, we will
show

{e ∈ E : ŵe ≥ t} = {e ∈ E : we ≥ t}.
6For convenience, we only prove this weaker formulation of locality. Although the version put forth at the beginning

of Section 3 is true, it requires a more careful analysis to prove and is not needed for our applications.
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Consider the sets S0, . . . , SL and levels t1, . . . , tL found in Algorithm 2. For completeness,
define t0 := +∞. Notice that by construction of the algorithm, we have for ℓ ∈ {0, . . . , L− 1} and
t ∈ (tℓ+1, tℓ],

{e ∈ E : ŵe ≥ t} = Sℓ.

Therefore, using Corollary 3.4, it suffices to show that Sℓ = S∗
f (x/t) = {e ∈ E : we ≥ t} for all such

ℓ and t. We do this by proving the following claim through induction on ℓ.

Claim 3.10. For each ℓ ∈ {1, . . . , L} we have

• S∗
f (x/t) = Sℓ−1 for t ∈ (tℓ, tℓ−1).

• S∗
f (x/tℓ) = Sℓ

For ℓ = 0 and t ∈ (t1,∞), notice that every non-empty set S ⊆ E must have density x(S)
f(S) ≤

t1 < t. Therefore, we have f(S) − x(S)/t > 0, so S∗
f (t) = ∅. Moreover, when t = t1, then

f(S) − x(S)/t1 ≥ 0 for all S, and S1 is the maximal set with f(S) − x(S)/t1 = 0, so we have
S∗
f (x/t1) = S1.
Now, assume that that for some ℓ, we have Sℓ = S∗

f (
x
tℓ
). Consider t ∈ [tℓ+1, tℓ). Notice that by

Corollary 3.4 and our inductive hypothesis, we know that

S∗
f

(x
t

)
⊇ S∗

f

(
x

tℓ

)
= Sℓ.

Therefore, we can write7

S∗
f

(x
t

)
= arg min

S⊇Sℓ

(f(S)− x(S)/t),

= Sℓ ∪
[
arg min

T⊆E\Sℓ

(f(Sℓ ∪ T )− x(Sℓ ∪ T )/t)
]
,

= Sℓ ∪
[
arg min

T⊆E\Sℓ

(fℓ(T )− x(T )/t)
]
,

where fℓ(T ) := f(Sℓ ∪ T ) − f(Sℓ) as in Algorithm 1. Again, we notice that if t ∈ (tℓ+1, tℓ), then
fℓ(T ) − x(T )/t > 0 for any non-empty T , so S∗

f

(
x
t

)
= Sℓ ∪ ∅ = Sℓ. On the other hand, if t = tℓ,

then fℓ(T ) − x(T )/tℓ+1 ≥ 0 for all T , and Tℓ+1 from Algorithm 1 is the unique maximal set with

fℓ(T )− x(T )/tℓ+1 = 0. Therefore, S∗
f

(
x

tℓ+1

)
= Sℓ ∪ Tℓ+1 = Sℓ+1, as desired.

Theorem 3.5. Consider the vector w, the nested sets S1 ⊂ · · · ⊂ SL, and the levels t1, . . . , tL
generated by Algorithm 1. Then t1 > · · · > tL ≥ 0. Moreover, if we define

αSL
:= tL

αSℓ
:= tℓ − tℓ+1 ℓ = 1, . . . , L− 1

and αS = 0 for all other S ⊆ E, then, ue =
xe
we

is an optimal primal solution to (SUA) and αS is
an optimal dual solution.
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Algorithm 2: An Alternate Combinatorial Presentation of Water Levels

input : A point x ∈ Rn
≥0.

1 Initialize t = 0, all elements are considered “unfrozen”
2 while there exists an unfrozen element do
3 Raise t until the vector

x(t) =

{
t · xe if e is unfrozen

tfrozen(e) · xe if e is frozen

has a tight set including at least one unfrozen element.
4 Freeze all the elements in the (unique) largest such tight set St of t · x.
5 We set all newly frozen elements in S to have tfrozen(e) := t.
6 Set we =

1
t for all e ∈ St.

output: A vector w.

Proof. We begin with an rephrasing of Algorithm 1. Instead of contracting elements as we did in
Algorithm 1, we “freeze” elements in Algorithm 2. Scaling x until some set is saturated is equivalent
to measuring the multiplicative slack of sets; therefore, the densities in Line 4 of Algorithm 1 are
precisely the time steps at which we freeze a new set of elements in Line 4 of Algorithm 2.

We use the KKT conditions to show ue and αS are optimal. Denote the Lagrange multipliers
for the constraints ue ≥ 0 by µe. We will set µe = 0 if xe > 0 and µe = we otherwise. The KKT
conditions are as follows:

• Primal Feasibility:
∑

e∈S ue ≤ f(S) for all S ⊆ E.

• Dual Feasibility: αS ≥ 0 for all S ⊆ E.

• Stationarity Conditions: For all e ∈ E,

xe
ue

=
∑
S∋e

αS − µe.

• Complementary Slackness: αS > 0 implies
∑

e∈S ue = f(S) and µe · ue = 0.

Primal feasibility follows from the fact that Algorithm 2 maintains feasibility of t · x on unfrozen
elements. Dual feasibility also easily follows since t only rises. If xe > 0, then µe = 0 and

xe
ue

= we =
∑
S∋e

αS

as desired. Otherwise, if xe = 0, then since µe = we, the stationary condition still holds. Lastly,
we check complementary slackness. We have a positive αS precisely on the sets E1, . . . , EL, and
so it suffices to check these sets are tight. Indeed, by definition of Algorithm 2, these sets are
tight. Lastly, we have that if xe > 0, then µe = 0 and that finishes our complementary slackness
conditions.

7For conciseness, we simply use argmin to denote the unique maximal minimizing set.
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4 A Fractional Algorithm for Online (Poly-)Matroid Intersection

We now formally present the water-filling algorithm in Algorithm 3. The program which computes
the allocation at each time step is given in Line 3. Despite having an exponential number of con-
straints, this optimization problem is polynomial-time solvable up to any desired accuracy because
(i) the objective is concave and (ii) the constraints admit a polynomial-time separation oracle.8

Algorithm 3: Submodular Water-Filling Algorithm

input : A monotone submodular function f , and parts Q1, . . . , Qm from a partition
matroid arriving online, both over ground set E.

output: A fractional allocation x ∈ Pf ∩Q, with
∑

e xe at least (1− 1/e) · OPT.
1 while some part Qj arrives: do
2 Let Ej := Q1 ∪ · · · ∪Qj denote the elements revealed so far.
3 Choose allocation (xe : e ∈ Qj) by solving the following convex program:

max
x,u

∑
e∈Qj

xe(1− log xe) +
∑
e∈Ej

xe log ue

s.t.
∑

e∈Qj
xe ≤ 1

u(S) ≤ f(S) ∀S ⊆ Ej

xe, ue ≥ 0.

Note that the variables are (xe : e ∈ Qj) and (ue : e ∈ Ej). The xe’s for the parts that
have previously arrived are fixed to their existing values.

4 return the resulting allocation x

If our definition of water levels behaves in the desired way, then the allocation xe for e ∈ Qj

should satisfy the following property at the end of Qj ’s allocation:

Water-Filling Property. Consider any part Qj , and let w denote the water level vector
at the end of Qj ’s allocation. Then

(1) For each e ∈ Qj with xe > 0, we have we = mine′∈Qj
we′ .

(2) If
∑

e∈Qj
xe < 1, then we = 1 for all e ∈ Qj .

Lemma 4.1. The vector x returned by Algorithm 3 is a feasible allocation, and it satisfies the
water-filling property above.

Proof. Consider any j, and let x be the resulting vector after Qj ’s allocation; we will show that it
is feasible and that it satisfies the water-filling property. To prove this, we use the KKT conditions
of the convex program solved in Line 3 of Algorithm 3. Introduce dual variable λ for the constraint∑

e∈Qj
xe ≤ 1, variables αS for the constraint u(S) ≤ f(S), and µe, θe for the non-negativity

8The constraints u(S) ≤ f(S) can be separated by finding a subset S ⊆ E which minimizes f(S)− u(S), which is
a submodular minimization problem. The other constraints are clearly easily separated.
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constraints of xe and ue, respectively. Then, the Lagrangian of the convex program is:

L(x, u;λ, α, µ, θ) =
∑
e∈Qj

xe(1− log xe) +
∑
e∈Ej

xe log ue

+ λ

1−
∑
e∈Qj

xe

+
∑
S⊆Ej

αS(f(S)− u(S)) +
∑
e∈Qj

µexe +
∑
e∈Ej

θeue.

The KKT conditions imply that at optimality, the primal/dual solutions satisfy

1. (Stationarity)

• For all e ∈ Qj ,
∂L
∂xe

= 0: − log(xe) + log(ue)− λ+ µe = 0.

• For all e ∈ Ej ,
∂L
∂ue

= 0: xe
ue
−
∑

(αS : e ∈ S) + θe = 0.

2. (Complementary Slackness)

• For all e ∈ Qj , xeµe = 0.

• For all e ∈ Ej , ueθe = 0.

• For all S ⊆ Ej , αS(f(S)− u(S)) = 0.

• λ(1−
∑

e∈Qj
xe) = 0.

3. (Feasibility) x, u are feasible to the convex program, and the dual variables λ, α, µ, and θ are
non-negative.

Another fact we will use is that the water levels corresponding to x are exactly we = xe
ue

for all
e ∈ E, by Theorem 3.5.

With these tools in hand, we first show that x is a feasible allocation. Let x0 and w0 denote the
allocation and water level vector, respectively, before part Qj arrived. Recall from Proposition 3.7
that an allocation is feasible if and only if all water levels are at most 1. Inductively, we may assume
that x0 is feasible, so w0 ≤ 1. To show that x remains feasible, it suffices to show that we ≤ 1 for
all e ∈ E. The first stationarity condition implies that for all e ∈ Qj , we have

we =
xe
ue

= e−λ+µe . (2)

If xe > 0, then µe = 0 from complementary slackness, which implies we = e−λ ≤ 1. Furthermore,
Proposition 3.9 (locality) implies that for any element e whose allocation did not change during
Qj ’s arrival, its water level we is at most the largest water level of an element whose allocation did
change. Thus, we ≤ 1 for all e ∈ E, so x is feasible.

We now show that the water-filling property holds at the end of Qj ’s allocation.

(1) Consider any e ∈ Qj with xe > 0. From (2), we have

we =
xe
ue

= e−λ+µe ≥ e−λ,

where the final inequality is because µe ≥ 0. If xe > 0, we know from complementary slackness
that µe = 0, implying we = e−λ. Thus we have shown we ≥ e−λ for all e ∈ Qj , with equality
if xe > 0. This proves part (1) of the water-filling property.
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(2) Suppose
∑

e∈Qj
xe < 1. By complementary slackness, this implies λ = 0. Hence, by (2), we

have for all e ∈ Qj

we =
xe
ue

= eµe ≥ 1.

However, we already showed that we ≤ 1 for all e ∈ E. Thus, we = 1 for all e ∈ Qj .

4.1 Analysis

Now that we have shown that our algorithm maintains the water-filling property, we proceed with
a primal-dual analysis to prove Theorem 1.1. Recall the dual program from Section 2.1:

min Lf (γ) +

n∑
j=1

βj

s.t γe + βj(e) ≥ 1, for all e ∈ E

γ, β ≥ 0.

where Lf is the Lovász extension of f , and j(e) is defined such that e ∈ Qj(e). We will construct a
set of dual variables based on the primal allocation of Algorithm 3. Specifically, after each arrival
of Qj and allocation of primal values, we update the dual variables by recomputing the water levels
w = w(x), then assigning:

γe := G(we) for all e ∈ E,

βj :=

(
1− g

(
min
e∈Qj

we

)) ∑
e∈Qj

xe.

where g(x) := ex−1, and G(x) :=
∫ x
0 g(t) dt = ex−1 − e−1. Note that after Qj ’s allocation, the

values of γe are updated for all e ∈ E revealed thus-far, but the only β variable that is updated is
βj . Observe that since the algorithm only increases the primal allocation x component-wise, then
by Proposition 3.6, the dual variables also only increase as the algorithm progresses.

To show a 1 − 1/e competitive ratio, we need to show approximate feasibility of the dual, and
that the dual increase is at most the primal increase.

4.1.1 Approximate Feasibility

Focus on a particular element e ∈ E. Let j = j(e), so e ∈ Qj . We simply check two cases: if
we = 1, then

γe + βj ≥ γe = G(1) = 1− 1/e.

Otherwise if we < 1, then by part (2) of the water-filling property (Lemma 4.1) we must have∑
e′∈Qj

xe′ = 1. Thus, we have

γe + βj = G(we) + 1− g

(
min
e′∈Qj

we′

)
≥ G(we) + 1− g(we) ≥ 1− 1/e,

since G(we) = g(we)− 1/e.
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4.1.2 ∆Primal ≥ ∆Dual

In order to lower bound the value of the primal solution, we will show that at each arrival, it
increases at least as much as the value of the dual solution. When Qj arrives, the change in the
primal is simply ∆Primal =

∑
e∈Qj

xe. Let w(init) denote the water levels induced by x before

the arrival of Qj , and w(fin) the water levels induced by x after the arrival of Qj and allocation of

primal values. We also denote q∗j := mine∈Qj w
(fin)
e . Then we may write the change in dual as:

∆Dual = ∆Lf (G(w)) +
(
1− g

(
q∗j
))
·
∑
e∈Qj

xe

= ∆Lf (G(w)) + ∆Primal− g
(
q∗j
)
·
∑
e∈Qj

xe,

where ∆Lf (G(w)) = Lf (G(w(fin)))− Lf (G(w(init))). Hence, it suffices to show that

∆Lf (G(w)) ≤ g
(
q∗j
)
·
∑
e∈Qj

xe.

Using the integral definition of the Lovász extension, we have

∆Lf (G(w)) = Lf (G(w(fin)))− Lf (G(w(init)))

=

∫ ∞

0

[
f({e : G(w(fin)

e ) ≥ t})− f({e : G(w(init)
e ) ≥ t})

]
dt.

Notice that w
(fin)
e = w

(init)
e for all e such that w

(fin)
e > mine∈Qj w

(fin)
e = q∗j , by Proposition 3.9. Thus,

we can truncate this integral at G(q∗j ) and perform the substitution t = G(u) to get

∆Lf (G(w)) =

∫ G(q∗j )

0

[
f({e : G(w(fin)) ≥ t})− f({e : G(w(init)) ≥ t})

]
dt

=

∫ q∗j

0

[
f({e : w(fin) ≥ u})− f({e : w(init) ≥ u})

]
g(u)du

≤ g(q∗j )

∫ q∗j

0

[
f({e : w(fin) ≥ u})− f({e : w(init) ≥ u})

]
du

≤ g(q∗j ) ·∆Lf (w)

Finally, we will use the duality property of water levels from Proposition 3.8: Lf (w) =
∑

e∈E xe.
This means ∆Lf (w) =

∑
e∈Qj

xe, which gives

∆Lf (G(w)) ≤ g(q∗j )
∑
e∈Qj

xe

as desired.

4.1.3 Proof of the Main Theorem

The above discussion immediately gives the proof of the main theorem:
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Proof of Theorem 1.1. Let x be the primal allocation given by Algorithm 3, and γ, β the associated
dual assignment defined above. Since we showed that at each step of the algorithm, ∆Primal ≥
∆Dual, we have that

∑
e xe ≥ Lf (γ)+

∑
j βj . By approximate feasibility, we have that γ′ := e

e−1 ·γ
and β′ := e

e−1 · β together form a feasible dual solution. Finally, positive homogeneity9 of the
Lovász extension and duality together give∑

e

xe ≥ Lf (γ) +
∑
j

βj

=

(
1− 1

e

)
·
(
Lf (γ

′) +
∑
j

β′
j

)

≥
(
1− 1

e

)
· OPTDual =

(
1− 1

e

)
· OPT.

5 Online Submodular Welfare Maximization for Matroidal Utili-
ties

In this section, we give a (1− 1/e)-competitive algorithm for the Online Submodular Welfare Max-
imization problem where the utility function of each agent is the rank function of a matroid.

Formally, there are n agents, and m items. The items arrive one at a time online. Each agent
has an associated utility function fi : 2

[m] → Z≥0 which is the rank function of a matroid Mi on
ground set [m]. In each time step, we must irrevocably assign the arriving item to some agent.
Suppose items Ui ⊆ [m] have been assigned to agents i ∈ [n]. Then the welfare of this allocation is∑

i∈[n]

fi(Ui).

The goal is to assign items to maximize welfare, as compared to the optimal offline allocation.
We work in the value oracle model, where we can query the value fi(S) for any i ∈ [n] and S ⊆ [m]
in constant time.

Our algorithm extends to the setting where each agent has a non-negative weight ai. In this
case, the utility function becomes fi := ai · rankMi .

5.1 The Matroidal Ranking Algorithm

First, some notation. For an allocation of items to agents, we will denote by Ui the set of items
assigned to agent i. Given such an allocation, we say that an item j is available to agent i if
fi(Ui + j) > fi(Ui).

The algorithm proceeds as follows. Independently for each agent i, select wi uniformly at
random from [0, 1]. Let the priority of agent i be defined as ai · (1 − g(wi)), where g(z) := ez−1.
When an item arrives, consider the set of agents to whom this item is available, and assign the
item to the highest priority agent among these. See Algorithm 4 for a formal description.

Remark 5.1 (Perusal perspective). We note that the Matroidal Ranking Algorithm yields the
same allocation as the following procedure. In order of decreasing priority, each agent “peruses”

9Lf (λx) = λLf (x) for λ ≥ 0. This follows from the definition of Lovász extension.
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the full set of items in their arrival order, and greedily picks any item which increases their utility.
While this perusal perspective cannot be implemented online, it yields an identical allocation as the
Matroidal Ranking Algorithm, and will be useful for the analysis.

Algorithm 4: Matroidal Ranking Algorithm

input : An instance of Matroid-OSWM with agents i ∈ [n], items [m], and utility
functions fi : 2

[m] → Z≥0.
output: An allocation of items Ui ⊆ [m] to each agent i with welfare at least (1− 1

e ) times
the welfare of the optimal offline allocation.

1 Select a value wi ∈ [0, 1] uniformly and independently for each agent, and set the priority
of agent i to be ai(1− g(wi)).

2 When an item j arrives, assign it to the highest priority agent to whom it is available.
3 return the resulting allocation Ui.

5.2 Analysis

Consider the primal and dual problems below. The primal has variables xij representing to what
extent item j ∈ [m] is allocated to agent i ∈ [n]. Notice that in the primal, rather than directly
optimizing for the welfare of the agents, we simply maximize the total quantity of items assigned,
while the constraints enforce that each agent receives an independent set of items with respect to
their matroid. Furthermore, there are constraints for each item enforcing that each is assigned at
most once. Thus, an integer binary solution to the primal corresponds to a feasible allocation with
objective value equal to the welfare of the allocation.

max
∑
i∈[n]

(
ai ·

∑
j∈[m] xij

)
min

∑
i∈[n]

∑
S⊆[m]

fi(S)αi,S +
∑
j∈[m]

βj

s.t. x(S) ≤ fi(S), ∀i ∈ [n], S ⊆ [m] s.t.
∑

S∋j αi,S + βj ≥ ai, ∀i ∈ [n], j ∈ [m]∑
i∈[n] xij ≤ 1, ∀j ∈ [m] α, β ≥ 0

x ≥ 0

Consider the primal solution x induced by the allocation at the end of the Matroidal Ranking
algorithm. This x depends on the random values wi which were chosen for each agent. We will
construct a dual solution (α, β) whose objective value is the same as that of x, and which is
approximately feasible in expectation. In particular, we will have

Ew∼[0,1]n

∑
S∋j

αi,S + βj

 ≥ (
e− 1

e

)
· ai.

for each (i, j) ∈ [n] × [m]. This implies that the scaled up solution ( e
e−1)(α, β) is a feasible in

expectation, and that x is ( e−1
e )-approximately optimal.
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Dual Assignment We now define the dual solution (α, β). For each agent i ∈ [n], if Ui is the
set of items assigned to agent i at the end of the algorithm, let Si := spanMi

(Ui) be the span of Ui

with respect toMi (i.e. the largest set of items containing Ui whose rank is equal to rankMi(Ui)).
We assign αi,Si := ai · g(wi). For each item j, if j ∈ Ui for some i ∈ [n], we set βj := ai · (1− g(wi)).
The remaining variables are set to zero.

Primal = Dual The dual solution described above has objective value equal to the primal
solution returned by the algorithm. To see this, note that whenever an item is assigned to an agent
i, the objective value of the dual increases by exactly ai. Furthermore, since we only assign an item
to an agent if it is available to them, the primal objective value increases by ai as well.

Expected Approximate Feasibility We now show that the dual solution is approximately
feasible in expectation. Fix a particular agent-item pair (̂i, ĵ). We will focus on the dual constraint∑

S∋ĵ αî,S + βĵ ≥ âi. First, condition on all random choices wi for i ̸= î. We denote these choices
by w−î. Note that, once w−î is fixed, the run of the algorithm is determined by the value of wî.
Hence, for any choice wA ∈ [0, 1] we will denote a run of the algorithm in which wî = wA as A.

For an agent i ∈ [n] and run A of the algorithm with wî = wA ∈ [0, 1], let U
(A,t)
i ⊆ [m] denote

the set of items assigned to agent i at time step t of run A of the algorithm. Likewise, let U
(A)
i

denote the set of items assigned to agent i at the end of run A of the algorithm. We will also write

span(U
(A,t)
i ) to mean spanMi

(U
(A,t)
i ), the span in agent i’s matroid of the set of items assigned to

agent i (and similarly for span(U
(A)
i )).

We now define the critical threshold w∗ to be maximum value of wî such that ĵ is in the span

of the items assigned to î in the final allocation. Formally,

w∗ := sup
{
wA ∈ [0, 1] : ĵ ∈ span

(
U

(A)

î

)}
.

We define sup(∅) = 0 by convention.
The following key lemma characterizes several invariants that hold throughout the Matroidal

Ranking algorithm. Specifically, it describes how the span(U
(A,t)
i ) changes as wA changes. This

will allow us to lower bound the expected amount of dual value assigned during the procedure.

Lemma 5.2. Fix w−î, and values wA and wB in [0, 1] with wA < wB. Consider the two separate
runs of the algorithm: A with wî = wA and B with wî = wB. Then at each iteration t, we have

(1) span(U
(A,t)

î
) ⊇ span(U

(B,t)

î
),

(2) span(U
(A,t)
i ) = span(U

(B,t)
i ) for all i ∈ [n] with wi ≤ wA,

(3) If wB = 1, then span(U
(A,t)
i ) ⊆ span(U

(B,t)
i ) for all i ̸= î.

Proof. Points (1) and (2) follow from the perusal perspective of Algorithm 4. In particular, for
point (1), agent î only peruses earlier in run A than in run B, so î has more items to choose from

in run A. For the tth item j, if j ∈ U
(B,t)

î
and it was not already spanned by U

(A,t−1)

î
, then it would

be chosen by î in step t of run A. So U
(B,t)

î
⊆ span(U

(A,t)

î
), which implies point (1).
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For point (2), the perusal of all agents i with wi < wA is identical in both runs A and B of the

algorithm, so in particular, U
(A,t)
i = U

(B,t)
i , implying point (2).

We prove point (3) by induction. Let wB = 1. Suppose for induction (3) holds at iteration t,

and a new item j arrives. Consider some i ̸= î. First, if j ∈ span(U
(B,t)
i ) already at time t, then

we have by induction

span(U
(A,t+1)
i ) ⊆ span

(
span(U

(A,t)
i ) ∪ {j}

)
⊆ span(U

(B,t+1)
i )

as desired.
So suppose otherwise that j ̸∈ span(U

(B,t)
i ). This means that in run B, when item j arrives, it

is available to agent i. For the invariant in point (3) to break, item j must be assigned to i in run
A but not assigned to i in run B. If j is not assigned to i in run B, it must be assigned to some
other i′ with wi′ < wi (since when j arrives, it is available to agent i). In particular, since wî = 1,
we know i′ ̸= i and we may apply induction to i′. This tells us that at time t (before j’s arrival),

span(U
(A,t)
i′ ) ⊆ span(U

(B,t)
i′ ), and therefore in run A, item j was also available to i′. Since wi′ < wi,

this contradicts that j is assigned to i in run A.

This yields the following pair of corollaries.

Corollary 5.3. If wî < w∗ then ĵ ∈ span(Uî)

Proof. This follows directly from the definition of w∗, and point (1) from Lemma 5.2.

Corollary 5.4. If w∗ < 1, then item ĵ is always assigned to an agent with water level at most w∗.

Proof. Observe first that for any ε > 0, if wî = w∗ + ε ≤ 1 then item ĵ is assigned to some agent

i with wi < w∗ + ε. This is because wî > w∗ implies both that item ĵ is available to î when it

arrives, and that it is not assigned to î. Since this holds for every ε > 0 yet there are only finitely
many agents, there is some such i =: i∗ with wi∗ ≤ w∗, and some ε∗ > 0 such that ĵ is assigned to
i∗ when wî = w∗ + ε∗.

Now we claim that for any value of wî, item ĵ is always available to i∗ when ĵ arrives. This implies
the claim. First, we compare instance A of the algorithm with wî = wA := w∗ + ε∗ to any instance

B with wî = wB > w∗ + ε∗. By Lemma 5.2(2) applied to i∗, we have span(U
(A,t)
i∗ ) = span(U

(B,t)
i∗ )

at the time t when ĵ arrives. So, in particular, ĵ is available to i∗ in instance B, since it’s available
in instance A.

Since the above holds for any wB > w∗ + ε, it in particular holds for wB = 1. Now we apply
Lemma 5.2(3) to i∗ on any instance A with wî = wA < 1 and instance B with wî = wB = 1. We

have span(U
(A,t)
i∗ ) ⊆ span(U

(B,t)
i∗ ) at time t when ĵ arrives. Therefore, again, since i∗ is available to

ĵ in instance B, it is also available in instance A.
So in all cases, ĵ is available to i∗ (with water level wi∗ ≤ w∗) when it arrives. So ĵ is always

assigned to an agent of water level at most w∗.

This gives us all ingredients required for the final proof that the Matroidal Ranking algorithm
achieves a (1− 1/e)-competitive ratio.
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Proof of Theorem 1.2. Let x be the primal solution given by the Matroidal Ranking algorithm,
and (α, β) the corresponding dual solution described above. We showed that the primal and dual
objectives are equal:

∑
i(ai ·

∑
j xij) =

∑
i,S fi(S)αi,S +

∑
j βj . To argue that x is (1 − 1/e)-

competitive in expectation with the offline optimal primal solution, it then suffices by duality to
show that, in expectation, α, β are approximately feasible.

For any fixed agent-item pair (̂i, ĵ), we condition on the values of w−î, and let w∗ be the critical
threshold. Then Corollary 5.3 implies that

Ewî∼[0,1]

[∑
S∋ĵ

αî,S

∣∣∣∣w−î

]
≥

∫ w∗

0
âi · g(z) dz = âi ·

(
g(w∗)− 1

e

)
.

Similarly, Corollary 5.4 implies that

Ewî∼[0,1]

[
β ĵ

∣∣∣∣w−î

]
≥

∫ 1

0
âi · (1− g(w∗)) dz = âi · (1− g(w∗)).

(note if w∗ = 1, then the RHS is 0, so the inequality still holds, despite Corollary 5.4 not applying).
The sum is then âi · (1− 1/e), and since this does not depend on the conditional values of w−î, we
may drop the conditioning to get

Ew∼[0,1]n

[∑
S∋ĵ

αî,S + β ĵ

]
≥ âi ·

(
1− 1

e

)

as desired.

6 Future Directions

In this paper, we presented the problem of Online Matroid Intersection with part arrivals and
showed two settings where a (1 − 1/e)-competitive algorithm can be achieved. There are several
open questions.

• Integral Online Matroid Intersection: The most natural question that remains is to determine
whether a 1− 1/e (or even 1/2 + ϵ) competitive algorithm exists for general (integral) Online
Matroid Intersection with part arrivals. We note that this setting does not obviously follow
from either of our current approaches. The ranking algorithm used in Section 5 does not easily
extend to general offline matroidsM, and it is known that a (1− 1/e)-approximate fractional
solution cannot be rounded online to an integral solution even for bipartite matching [DJ12].

• Item-weighted Matroidal OSWM: We may also consider the OSWM setting where valuations
fi are weighted matroid rank functions (WMRF) as defined in Section 1.1. Recall that this
generalizes both the agent-weighted matroidal valuations considered in Section 5 and the
edge-weighted online bipartite matching setting, in which > 1/2 competitive algorithms are
known [FHTZ20, SA21, GHH+21, BC21]. Therefore, we suspect that a 1/2 + ϵ competitive
algorithm should exist in this setting as well.
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